Exact joint forecast regions for vector autoregressive models
Wai-Sum Chan
Journal of Applied Statistics, 1999, vol. 26, issue 1, 35-44
Abstract:
Assume that a k-element vector time series follows a vector autoregressive (VAR) model. Obtaining simultaneous forecasts of the k elements of the vector time series is an important problem. Based on the Bonferroni inequality, Lutkepohl (1991) derived the procedures which construct the conservative joint forecast regions for the VAR model. In this paper, we propose to use an exact method which provides shorter prediction intervals than does the Bonferroni method. Three illustrative examples are given for comparison of the various VAR forecasting procedures.
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769922638 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:26:y:1999:i:1:p:35-44
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769922638
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().