EconPapers    
Economics at your fingertips  
 

Exact joint forecast regions for vector autoregressive models

Wai-Sum Chan

Journal of Applied Statistics, 1999, vol. 26, issue 1, 35-44

Abstract: Assume that a k-element vector time series follows a vector autoregressive (VAR) model. Obtaining simultaneous forecasts of the k elements of the vector time series is an important problem. Based on the Bonferroni inequality, Lutkepohl (1991) derived the procedures which construct the conservative joint forecast regions for the VAR model. In this paper, we propose to use an exact method which provides shorter prediction intervals than does the Bonferroni method. Three illustrative examples are given for comparison of the various VAR forecasting procedures.

Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769922638 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:26:y:1999:i:1:p:35-44

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664769922638

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:26:y:1999:i:1:p:35-44