A Markov chain model for longitudinal categorical data when there may be non-ignorable non-response
Saling Huang and
Morton Brown
Journal of Applied Statistics, 1999, vol. 26, issue 1, 5-18
Abstract:
Longitudinal data with non-response occur in studies where the same subject is followed over time but data for each subject may not be available at every time point. When the response is categorical and the response at time t depends on the response at the previous time points, it may be appropriate to model the response using a Markov model. We generalize a second-order Markov model to include a non-ignorable non-response mechanism. Simulation is used to study the properties of the estimators. Large sample sizes are necessary to ensure that the algorithm converges and that the asymptotic properties of the estimators can be used.
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769922610 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:26:y:1999:i:1:p:5-18
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769922610
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().