Interval estimators for the population mean for skewed distributions with a small sample size
Glen Meeden
Journal of Applied Statistics, 1999, vol. 26, issue 1, 81-96
Abstract:
In finite population sampling, it has long been known that, for small sample sizes, when sampling from a skewed population, the usual frequentist intervals for the population mean cover the true value less often than their stated frequency of coverage. Recently, a non-informative Bayesian approach to some problems in finite population sampling has been developed, which is based on the 'Polya posterior'. For large sample sizes, these methods often closely mimic standard frequentist methods. In this paper, a modification of the 'Polya posterior', which employs the weighted Polya distribution, is shown to give interval estimators with improved coverage properties for problems with skewed populations and small sample sizes. This approach also yields improved tests for hypotheses about the mean of a skewed distribution.
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769922674 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:26:y:1999:i:1:p:81-96
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769922674
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().