Estimation of surgeon effects in the analysis of post-operative colorectal cancer patients data
K. K. W. Yau
Journal of Applied Statistics, 1999, vol. 26, issue 2, 257-272
Abstract:
There has been increasing interest in the assessment of surgeon effects for survival data of post-operative cancer patients. In particular, the measurement of surgeon's surgical performance after eliminating significant risk variables is considered. The generalized linear mixed model approach, which assumes a log-normal-distributed surgeon effects in the hazard function, is adopted to assess the random surgeon effects of post-operative colorectal cancer patients data. The method extends the traditional Cox's proportional hazards regression model, by including a random component in the linear predictor. Estimation is accomplished by constructing an appropriate log-likelihood function in the spirit of the best linear unbiased predictor method and extends to obtain residual maximum likelihood estimates. As a result of the non-proportionality of the hazard of colon and rectal cancer, the data are analyzed separately according to these two kinds of cancer. Significant risk variables are identified. The 'predictions' of random surgeon effects are obtained and their association with the rank of surgeon is examined.
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769922593 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:26:y:1999:i:2:p:257-272
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769922593
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().