EconPapers    
Economics at your fingertips  
 

A Markov chain model used in analyzing disease history applied to a stroke study

Pai-Lien Chen, Estrada Bernard and Pranab Sen

Journal of Applied Statistics, 1999, vol. 26, issue 4, 413-422

Abstract: In clinical research, study subjects may experience multiple events that are observed and recorded periodically. To analyze transition patterns of disease processes, it is desirable to use those multiple events over time in the analysis. This study proposes a multi-state Markov model with piecewise transition probability, which is able to accommodate periodically observed clinical data without a time homogeneity assumption. Models with ordinal outcomes that incorporate covariates are also discussed. The proposed models are illustrated by an analysis of the severity of morbidity in a monthly follow-up study for patients with spontaneous intracerebral hemorrhage.

Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769922304 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:26:y:1999:i:4:p:413-422

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664769922304

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:26:y:1999:i:4:p:413-422