A non-parametric regression approach to repeated measures analysis in cancer experiments
M. Carme Ruiz De Villa,
M. Salome,
E. Cabral,
Eduardo Escrich Escriche and
Montse Solanas
Journal of Applied Statistics, 1999, vol. 26, issue 5, 601-611
Abstract:
The validity conditions for univariate or multivariate analyses of repeated measures are highly sensitive to the usual assumptions. In cancer experiments, the data are frequently heteroscedastic and strongly correlated with time, and standard analyses do not perform well. Alternative non-parametric approaches can contribute to an analysis of these longitudinal data. This paper describes a method for such situations, using the results from a comparative experiment in which tumour volume is evaluated over time. First, we apply the non-parametric approach proposed by Raz in constructing a randomization Ftest for comparing treatments. A local polynomial fit is conducted to estimate the growth curves and confidence intervals for each treatment. Finally, this technique is used to estimate the velocity of tumour growth.
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769922269 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:26:y:1999:i:5:p:601-611
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769922269
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().