Graphical technique for comparing designs for random models
Juneyoung Lee and
Andre Khuri
Journal of Applied Statistics, 1999, vol. 26, issue 8, 933-947
Abstract:
Methods for comparing designs for a random (or mixed) linear model have focused primarily on criteria based on single-valued functions. In general, these functions are difficult to use, because of their complex forms, in addition to their dependence on the model's unknown variance components. In this paper, a graphical approach is presented for comparing designs for random models. The one-way model is used for illustration. The proposed approach is based on using quantiles of an estimator of a function of the variance components. The dependence of these quantiles on the true values of the variance components is depicted by plotting the so-called quantile dispersion graphs (QDGs), which provide a comprehensive picture of the quality of estimation obtained with a given design. The QDGs can therefore be used to compare several candidate designs. Two methods of estimation of variance components are considered, namely analysis of variance and maximum-likelihood estimation.
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769921945 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:26:y:1999:i:8:p:933-947
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769921945
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().