Logistic regression in meta-analysis using aggregate data
Bei-Hung Chang,
Stuart Lipsitz and
Christine Waternaux
Journal of Applied Statistics, 2000, vol. 27, issue 4, 411-424
Abstract:
We derived two methods to estimate the logistic regression coefficients in a meta-analysis when only the 'aggregate' data (mean values) from each study are available. The estimators we proposed are the discriminant function estimator and the reverse Taylor series approximation. These two methods of estimation gave similar estimators using an example of individual data. However, when aggregate data were used, the discriminant function estimators were quite different from the other two estimators. A simulation study was then performed to evaluate the performance of these two estimators as well as the estimator obtained from the model that simply uses the aggregate data in a logistic regression model. The simulation study showed that all three estimators are biased. The bias increases as the variance of the covariate increases. The distribution type of the covariates also affects the bias. In general, the estimator from the logistic regression using the aggregate data has less bias and better coverage probabilities than the other two estimators. We concluded that analysts should be cautious in using aggregate data to estimate the parameters of the logistic regression model for the underlying individual data.
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760050003605 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:27:y:2000:i:4:p:411-424
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760050003605
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().