Study of a Markov model for a high-quality dependent process
C. D. Lai,
M. Xie and
K. Govindaraju
Journal of Applied Statistics, 2000, vol. 27, issue 4, 461-473
Abstract:
For high-quality processes, non-conforming items are seldom observed and the traditional p (or np) charts are not suitable for monitoring the state of the process. A type of chart based on the count of cumulative conforming items has recently been introduced and it is especially useful for automatically collected one-at-a-time data. However, in such a case, it is common that the process characteristics become dependent as items produced one after another are inspected. In this paper, we study the problem of process monitoring when the process is of high quality and measurement values possess a certain serial dependence. The problem of assuming independence is examined and a Markov model for this type of process is studied, upon which suitable control procedures can be developed.
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760050003641 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:27:y:2000:i:4:p:461-473
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760050003641
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().