A composite quantile function estimator with applications in bootstrapping
Alan Hutson
Journal of Applied Statistics, 2000, vol. 27, issue 5, 567-577
Abstract:
In this note we define a composite quantile function estimator in order to improve the accuracy of the classical bootstrap procedure in small sample setting. The composite quantile function estimator employs a parametric model for modelling the tails of the distribution and uses the simple linear interpolation quantile function estimator to estimate quantiles lying between 1/(n+1) and n/(n+1). The method is easily programmed using standard software packages and has general applicability. It is shown that the composite quantile function estimator improves the bootstrap percentile interval coverage for a variety of statistics and is robust to misspecification of the parametric component. Moreover, it is also shown that the composite quantile function based approach surprisingly outperforms the parametric bootstrap for a variety of small sample situations.
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760050076407 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:27:y:2000:i:5:p:567-577
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760050076407
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().