EconPapers    
Economics at your fingertips  
 

A class of robust stepwise alternatives to Hotelling's T 2 tests

Govind Mudholkar and Deo Kumar Srivastava

Journal of Applied Statistics, 2000, vol. 27, issue 5, 599-619

Abstract: Hotelling's T 2 test is known to be optimal under multivariate normality and is reasonably validity-robust when the assumption fails. However, some recently introduced robust test procedures have superior power properties and reasonable type I error control with non-normal populations. These, including the tests due to Tiku & Singh (1982), Tiku & Balakrishnan (1988) and Mudholkar & Srivastava (1999b, c), are asymptotically valid but are useful with moderate size samples only if the population dimension is small. A class of B-optimal modifications of the stepwise alternatives to Hotellings T 2 introduced by Mudholkar & Subbaiah (1980) are simple to implement and essentially equivalent to the T 2 test even with small samples. In this paper we construct and study the robust versions of these modified stepwise tests using trimmed means instead of sample means. We use the robust one- and two-sample trimmed- t procedures as in Mudholkar et al. (1991) and propose statistics based on combining them. The results of an extensive Monte Carlo experiment show that the robust alternatives provide excellent type I error control and a substantial gain in power.

Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760050076434 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:27:y:2000:i:5:p:599-619

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760050076434

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:27:y:2000:i:5:p:599-619