EconPapers    
Economics at your fingertips  
 

A test for multivariate structure

Fred Huffer and Cheolyong Park

Journal of Applied Statistics, 2000, vol. 27, issue 5, 633-650

Abstract: We present a test for detecting 'multivariate structure' in data sets. This procedure consists of transforming the data to remove the correlations, then discretizing the data and, finally, studying the cell counts in the resulting contingency table. A formal test can be performed using the usual chi-squared test statistic. We give the limiting distribution of the chi-squared statistic and also present simulation results to examine the accuracy of this limiting distribution in finite samples. Several examples show that our procedure can detect a variety of different types of structure. Our examples include data with clustering, digitized speech data, and residuals from a fitted time series model. The chi-squared statistic can also be used as a test for multivariate normality.

Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760050076452 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:27:y:2000:i:5:p:633-650

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760050076452

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:27:y:2000:i:5:p:633-650