Approximate transformation trimmed mean methods to the test of simple linear regression slope equality
Wei-Ming Luh and
Jiin-Huarng Guo
Journal of Applied Statistics, 2000, vol. 27, issue 7, 843-857
Abstract:
To deal with the problem of non-normality and heteroscedasticity, the current study proposes applying approximate transformation trimmed mean methods to the test of simple linear regression slope equality. The distribution-free slope estimates are first trimmed on both sides and then the test statistic t is transformed by Johnson's method for each group to correct non-normality. Lastly, an approximate test such as the James second-order test, the Welch test, or the DeShon-Alexander test, which are robust for heterogeneous variances, is applied to test the equality of regression slopes. Bootstrap methods and Monte Carlo simulation results show that the proposed methods provide protection against both unusual y values, as well as unusual x values. The new methods are valid alternatives for testing the simple linear regression slopes when heteroscedastic variances and nonnormality are present.
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760050120533 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:27:y:2000:i:7:p:843-857
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760050120533
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().