EconPapers    
Economics at your fingertips  
 

On tests of linearity for dose response data: Asymptotic, exact conditional and exact unconditional tests

Man-Lai Tang

Journal of Applied Statistics, 2000, vol. 27, issue 7, 871-880

Abstract: The approximate chi-square statistic, X 2 Q , which is calculated as the difference between the usual chi-square statistic for heterogeneity and the Cochran-Armitage trend test statistic, has been widely applied to test the linearity assumption for dose-response data. This statistic can be shown to be asymptotically distributed as chi-square with K - 2 degrees of freedom. However, this asymptotic property could be quite questionable if the sample size is small, or if there is a high degree of sparseness or imbalance in the data. In this article, we consider how exact tests based on this X 2 Q statistic can be performed. Both the exact conditional and unconditional versions will be studied. Interesting findings include: (i) the exact conditional test is extremely sensitive to a small change in dosages, which may eventually produce a degenerate exact conditional distribution; and (ii) the exact unconditional test avoids the problem of degenerate distribution and is shown to be less sensitive to the change in dosages. A real example involving an animal carcinogenesis experiment as well as a fictitious data set will be used for illustration purposes.

Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760050120551 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:27:y:2000:i:7:p:871-880

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760050120551

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:27:y:2000:i:7:p:871-880