Johnson's transformation two-sample trimmed t and its bootstrap method for heterogeneity and non-normality
Wei-Ming Luh and
Jiin-Huarng Guo
Journal of Applied Statistics, 2000, vol. 27, issue 8, 965-973
Abstract:
The present study investigates the performance of Johnson's transformation trimmed t statistic, Welch's t test, Yuen's trimmed t , Johnson's transformation untrimmed t test, and the corresponding bootstrap methods for the two-sample case with small/unequal sample sizes when the distribution is non-normal and variances are heterogeneous. The Monte Carlo simulation is conducted in two-sided as well as one-sided tests. When the variance is proportional to the sample size, Yuen's trimmed t is as good as Johnson's transformation trimmed t . However, when the variance is disproportional to the sample size, the bootstrap Yuen's trimmed t and the bootstrap Johnson's transformation trimmed t are recommended in one-sided tests. For two-sided tests, Johnson's transformation trimmed t is not only valid but also powerful in comparison to the bootstrap methods.
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760050173292 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:27:y:2000:i:8:p:965-973
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760050173292
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().