Using wavelets for data generation
Mehmetcik Bayazit and
Hafzullah Aksoy
Journal of Applied Statistics, 2001, vol. 28, issue 2, 157-166
Abstract:
Wavelets are proposed as a non-parametric data generation tool. The idea behind the suggested method is decomposition of data into its details and later reconstruction by summation of the details randomly to generate new data. A Haar wavelet is used because of its simplicity. The method is applied to annual and monthly streamflow series taken from Turkey and USA. It is found to give good results for non-skewed data, as well as in the presence of auto-correlation.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760020016073 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:2:p:157-166
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760020016073
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().