Bayesian analysis of time series Poisson data
Man-Suk Oh and
Yong Bin Lim
Journal of Applied Statistics, 2001, vol. 28, issue 2, 259-271
Abstract:
This paper provides a practical simulation-based Bayesian analysis of parameter-driven models for time series Poisson data with the AR(1) latent process. The posterior distribution is simulated by a Gibbs sampling algorithm. Full conditional posterior distributions of unknown variables in the model are given in convenient forms for the Gibbs sampling algorithm. The case with missing observations is also discussed. The methods are applied to real polio data from 1970 to 1983.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760020016154 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:2:p:259-271
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760020016154
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().