EconPapers    
Economics at your fingertips  
 

An approximate maximum likelihood procedure for parameter estimation in multivariate discrete data regression models

Andrew Roddam

Journal of Applied Statistics, 2001, vol. 28, issue 2, 273-279

Abstract: This paper considers an alternative to iterative procedures used to calculate maximum likelihood estimates of regression coefficients in a general class of discrete data regression models. These models can include both marginal and conditional models and also local regression models. The classical estimation procedure is generally via a Fisher-scoring algorithm and can be computationally intensive for high-dimensional problems. The alternative method proposed here is non-iterative and is likely to be more efficient in high-dimensional problems. The method is demonstrated on two different classes of regression models.

Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760020016163 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:2:p:273-279

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760020016163

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:28:y:2001:i:2:p:273-279