Multidimensional scaling used in multivariate statistical process control
Trevor Cox
Journal of Applied Statistics, 2001, vol. 28, issue 3-4, 365-378
Abstract:
This paper considers the use of multidimensional scaling techniques in multivariate statistical process control. Principal components analysis, multiple principal components analysis, partial least squares and PARAFAC models have already been established as useful methods for such, but it should be possible to widen the portfolio of techniques to include others that come under the multidimensional scaling class. Some of these are briefly described-namely classical scaling, non-metric scaling, biplots, Procrustes analysis-and are then used on some gas transportation data provided by Transco.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120034108 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:3-4:p:365-378
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120034108
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().