Observable trend-projecting state-space models
E. J. Godolphin
Journal of Applied Statistics, 2001, vol. 28, issue 3-4, 379-389
Abstract:
Much attention has focused in recent years on the use of state-space models for describing and forecasting industrial time series. However, several state-space models that are proposed for such data series are not observable and do not have a unique representation, particularly in situations where the data history suggests marked seasonal trends. This raises major practical difficulties since it becomes necessary to impose one or more constraints and this implies a complicated error structure on the model. The purpose of this paper is to demonstrate that state-space models are useful for describing time series data for forecasting purposes and that there are trend-projecting state-space components that can be combined to provide observable state-space representations for specified data series. This result is particularly useful for seasonal or pseudo-seasonal time series. A well-known data series is examined in some detail and several observable state-space models are suggested and compared favourably with the constrained observable model.
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120034117 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:3-4:p:379-389
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120034117
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().