EconPapers    
Economics at your fingertips  
 

Penalized likelihood inference in extreme value analyses

Francesco Pauli and Stuart Coles

Journal of Applied Statistics, 2001, vol. 28, issue 5, 547-560

Abstract: Models for extreme values are usually based on detailed asymptotic argument, for which strong ergodic assumptions such as stationarity, or prescribed perturbations from stationarity, are required. In most applications of extreme value modelling such assumptions are not satisfied, but the type of departure from stationarity is either unknown or complex, making asymptotic calculations unfeasible. This has led to various approaches in which standard extreme value models are used as building blocks for conditional or local behaviour of processes, with more general statistical techniques being used at the modelling stage to handle the non-stationarity. This paper presents another approach in this direction based on penalized likelihood. There are some advantages to this particular approach: the method has a simple interpretation; computations for estimation are relatively straightforward using standard algorithms; and a simple reinterpretation of the model enables broader inferences, such as confidence intervals, to be obtained using MCMC methodology. Methodological details together with applications to both athletics and environmental data are given.

Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120047889 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:5:p:547-560

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760120047889

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:28:y:2001:i:5:p:547-560