Modeling the presence of immunes by using the exponentiated-Weibull model
Vicente Cancho and
Heleno Bolfarine
Journal of Applied Statistics, 2001, vol. 28, issue 6, 659-671
Abstract:
In this paper the exponentiated-Weibull model is modified to model the possibility that long-term survivors are present in the data. The modification leads to an exponentiated-Weibull mixture model which encompasses as special cases the exponential and Weibull mixture models typically used to model such data. Inference for the model parameters is considered via maximum likelihood and also via Bayesian inference by using Markov chain Monte Carlo simulation. Model comparison is considered by using likelihood ratio statistics and also the pseudo Bayes factor, which can be computed by using the generated samples. An example of a data set is considered for which the exponentiated-Weibull mixture model presents a better fit than the Weibull mixture model. Results of simulation studies are also reported, which show that the likelihood ratio statistics seems to be somewhat deficient for small and moderate sample sizes.
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120059200 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:6:p:659-671
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120059200
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().