Missing values in replicated Latin squares
Ralph Mansson and
Philip Prescott
Journal of Applied Statistics, 2001, vol. 28, issue 6, 743-757
Abstract:
Designs based on any number of replicated Latin squares are examined for their robustness against the loss of up to three observations randomly scattered throughout the design. The information matrix for the treatment effects is used to evaluate the average variances of the treatment differences for each design in terms of the number of missing values and the size of the design. The resulting average variances are used to assess the overall robustness of the designs. In general, there are 16 different situations for the case of three missing values when there are at least three Latin square replicates in the design. Algebraic expressions may be determined for all possible configurations, but here the best and worst cases are given in detail. Numerical illustrations are provided for the average variances, relative efficiencies, minimum and maximum variances and the frequency counts, showing the effects of the missing values for a range of design sizes and levels of replication.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120059273 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:6:p:743-757
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120059273
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().