Hits-and-misses for the evaluation and combination of forecasts
Thomas Wenzel
Journal of Applied Statistics, 2001, vol. 28, issue 6, 759-773
Abstract:
Error measures for the evaluation of forecasts are usually based on the size of the forecast errors. Common measures are, e.g. the mean squared error (MSE), the mean absolute deviation (MAD) or the mean absolute percentage error (MAPE). Alternative measures for the comparison of forecasts are turning points or hits-and-misses, where an indicator loss function is used to decide if a forecast is of high quality or not. Here, we discuss the latter to obtain reliable combined forecasts. We apply several combination techniques to a set of German macroeconomic data. Furthermore, we perform a small simulation study for the combination of two biased forecasts.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120059282 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:6:p:759-773
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120059282
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().