Regression estimators in extreme and median ranked set samples
Hassen Muttlak
Journal of Applied Statistics, 2001, vol. 28, issue 8, 1003-1017
Abstract:
The ranked set sampling (RSS) method as suggested by McIntyre (1952) may be modified to come up with new sampling methods that can be made more efficient than the usual RSS method. Two such modifications, namely extreme and median ranked set sampling methods, are considered in this study. These two methods are generally easier to use in the field and less prone to problems resulting from errors in ranking. Two regression-type estimators based on extreme ranked set sampling (ERSS) and median ranked set sampling (MRSS) for estimating the population mean of the variable of interest are considered in this study and compared with the regression-type estimators based on RSS suggested by Yu & Lam (1997). It turned out that when the variable of interest and the concomitant variable jointly followed a bivariate normal distribution, the regression-type estimator of the population mean based on ERSS dominates all other estimators considered.
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120076670 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:8:p:1003-1017
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120076670
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().