Multistate recapture models: Modelling incomplete individual histories
J. D. Lebreton and
R. Pradel Cefe
Journal of Applied Statistics, 2002, vol. 29, issue 1-4, 353-369
Abstract:
Multistate capture-recapture models are a natural generalization of the usual one-site recapture models. Similarly, individuals are sampled on discrete occasions, at which they may be captured or not. However, contrary to the one-site case, the individuals can move within a finite set of states between occasions. The growing interest in spatial aspects of population dynamics presently contributes to making multistate models a very promising tool for population biology. We review first the interest and the potential of multistate models, in particular when they are used with individual states as well as geographical sites. Multistate models indeed constitute canonical capture-recapture models for individual categorical covariates changing over time, and can be linked to longitudinal studies with missing data and models such as hidden Markov chains. Multistate models also provide a promising tool for handling heterogeneity of capture, provided states related to capturability can be defined and used. Such an approach could be relevant for population size estimation in closed populations. Multistate models also constitute a natural framework for mixtures of information in individual history data. Presently, most models can be fit using program MARK. As an example, we present a canonical model for multisite accession to reproduction, which fully generalizes a classical one-site model. In the generalization proposed, one can estimate simultaneously age-dependent rates of accession to reproduction, natal and breeding dispersal. Finally, we discuss further generalizations - such as a multistate generalization of growth rate models and models for data where the state in which an individual is detected is known with uncertainty - and prospects for software development.
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120108638 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:29:y:2002:i:1-4:p:353-369
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120108638
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().