Solving problems in parameter redundancy using computer algebra
E. A. Catchpole,
B. J. T. Morgan and
A. Viallefont
Journal of Applied Statistics, 2002, vol. 29, issue 1-4, 625-636
Abstract:
A model, involving a particular set of parameters, is said to be parameter redundant when the likelihood can be expressed in terms of a smaller set of parameters. In many important cases, the parameter redundancy of a model can be checked by evaluating the symbolic rank of a derivative matrix. We describe the main results, and show how to construct this matrix using the symbolic algebra package Maple. We apply the theory to examples from the mark-recapture field. General code is given which can be applied to other models.
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120108601 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:29:y:2002:i:1-4:p:625-636
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120108601
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().