Bayesian model selection and parameter estimation for possibly asymmetric and non-stationary time series using a reversible jump Markov chain Monte Carlo approach
Man-Suk Oh and
Dong Wan Shin
Journal of Applied Statistics, 2002, vol. 29, issue 5, 771-789
Abstract:
A Markov chain Monte Carlo (MCMC) approach, called a reversible jump MCMC, is employed in model selection and parameter estimation for possibly non-stationary and non-linear time series data. The non-linear structure is modelled by the asymmetric momentum threshold autoregressive process (MTAR) of Enders & Granger (1998) or by the asymmetric self-exciting threshold autoregressive process (SETAR) of Tong (1990). The non-stationary and non-linear feature is represented by the MTAR (or SETAR) model in which one ( „ 1 ) of the AR coefficients is greater than one, and the other ( „ 2 ) is smaller than one. The other non-stationary and linear, stationary and nonlinear, and stationary and linear features, represented respectively by ( „ 1 = „ 2 = 1 ), ( „ 1 p „ 2 < 1 ) and ( „ 1 = „ 2 < 1 ), are also considered as possible models. The reversible jump MCMC provides estimates of posterior probabilities for these four different models as well as estimates of the AR coefficients „ 1 and „ 2 . The proposed method is illustrated by analysing six series of US interest rates in terms of model selection, parameter estimation, and forecasting.
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120098829 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:29:y:2002:i:5:p:771-789
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120098829
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().