Adjusting for missing record linkage in outcome studies
Jixian Wang and
Peter Donnan
Journal of Applied Statistics, 2002, vol. 29, issue 6, 873-884
Abstract:
Record linkage databases have been increasingly available and used in pharmacoepidemiology, pharmacoeconomic and outcome studies, where the relationship between drug exposure or intervention and outcome is the main concern. Sometimes the linkage between outcome data and exposure data may be missing so that only a proportion of patients in the outcome database can be linked to other databases. This paper proposes maximum likelihood (ML) and GEE procedures to obtain consistent estimates of parameters in the model relating the outcome and risk factors. Asymptotic variances of the estimates were derived for the situation where the missing rate is estimated from the same dataset. We show that using the estimated missing rate, rather than the known missing rate, may result in more accurate estimates of the parameters. The confidence interval of the predicted occurrence rate, when the missing rate was estimated, was derived. Simulations for different scenarios were performed in order to explore the small-sample behaviour of the ML procedure using the estimated missing rate. The results confirmed the greater efficiency of using the estimated missing rate instead of the true one for large sample sizes. However, this may not be true for small samples. The ML procedure was applied to an analysis of coronary artery bypass operations in patients with acute coronary syndrome.
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760220136186 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:29:y:2002:i:6:p:873-884
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760220136186
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().