Singular value decomposition of matched matrices
Michael Greenacre
Journal of Applied Statistics, 2003, vol. 30, issue 10, 1101-1113
Abstract:
We consider the joint analysis of two matched matrices which have common rows and columns, for example multivariate data observed at two time points or split according to a dichotomous variable. Methods of interest include principal components analysis for interval-scaled data, correspondence analysis for frequency data, log-ratio analysis of compositional data and linear biplots in general, all of which depend on the singular value decomposition. A simple result in matrix algebra shows that by setting up two matched matrices in a particular block format, matrix sum and difference components can be analysed using a single application of the singular value decomposition algorithm. The methodology is applied to data from the International Social Survey Program comparing male and female attitudes on working wives across eight countries. The resulting biplots optimally display the overall cross-cultural differences as well as the male-female differences. The case of more than two matched matrices is also discussed.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/0266476032000107132 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:30:y:2003:i:10:p:1101-1113
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/0266476032000107132
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().