Bayesian modelling of spatial compositional data
Håkon Tjelmeland and
Kjetill Vassmo Lund
Journal of Applied Statistics, 2003, vol. 30, issue 1, 87-100
Abstract:
Compositional data are vectors of proportions, specifying fractions of a whole. Aitchison (1986) defines logistic normal distributions for compositional data by applying a logistic transformation and assuming the transformed data to be multi- normal distributed. In this paper we generalize this idea to spatially varying logistic data and thereby define logistic Gaussian fields. We consider the model in a Bayesian framework and discuss appropriate prior distributions. We consider both complete observations and observations of subcompositions or individual proportions, and discuss the resulting posterior distributions. In general, the posterior cannot be analytically handled, but the Gaussian base of the model allows us to define efficient Markov chain Monte Carlo algorithms. We use the model to analyse a data set of sediments in an Arctic lake. These data have previously been considered, but then without taking the spatial aspect into account.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/0266476022000018547 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:30:y:2003:i:1:p:87-100
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/0266476022000018547
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().