Modelling repeated insurance claim frequency data using the generalized linear mixed model
Kelvin Yau,
Karen Yip and
H. K. Yuen
Journal of Applied Statistics, 2003, vol. 30, issue 8, 857-865
Abstract:
Most of the methods used to estimate claim frequency rates in general insurance have assumed that data are independent. However, it is not uncommon for information stored in the database of an insurance company to contain previous years' claim data from each policyholder. We consider the application of the generalized linear mixed model approach to the analysis of repeated insurance claim frequency data in which a conditionally fixed random effect vector is incorporated explicitly into the linear predictor to model the inherent correlation. A motor insurance data set is used as the basis for simulation to demonstrate the advantages of the method. Ignoring the underlying association for observations within the same policyholder results in an underestimation of the standard error of the parameter estimates and a remarkable reduction in the prediction accuracy. The method provides a viable alternative for incorporating repeated claim experience that enables the revision of rates in general insurance.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/0266476032000075949 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:30:y:2003:i:8:p:857-865
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/0266476032000075949
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().