EconPapers    
Economics at your fingertips  
 

Optimal designs for beta-binomial logistic regression models

Goran Arnoldsson

Journal of Applied Statistics, 2003, vol. 30, issue 8, 939-951

Abstract: Optimal designs for a logistic regression model with over-dispersion introduced by a beta-binomial distribution are characterized. Designs are defined by a set of design points and design weights as usual but, in addition, the experimenter must also make a choice of a sub-sampling design specifying the distribution of observations on sample sizes. In an earlier work it has been shown that Ds-optimal sampling designs for estimation of the parameters of the beta-binomial distribution are supported on at most two design points. This admits a simplified approach using single sample sizes. Linear predictor values for Ds-optimal designs using a common sample size are tabulated for different levels of over-dispersion and choice of subsets of parameters.

Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/0266476032000076001 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:30:y:2003:i:8:p:939-951

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/0266476032000076001

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:30:y:2003:i:8:p:939-951