Economics at your fingertips  

Inferences Based on a Skipped Correlation Coefficient

Rand Wilcox

Journal of Applied Statistics, 2004, vol. 31, issue 2, 131-143

Abstract: The most popular method for trying to detect an association between two random variables is to test H0 : ρ=0, the hypothesis that Pearson's correlation is equal to zero. It is well known, however, that Pearson's correlation is not robust, roughly meaning that small changes in any distribution, including any bivariate normal distribution as a special case, can alter its value. Moreover, the usual estimate of ρ, r, is sensitive to only a few outliers which can mask a true association. A simple alternative to testing H0 : ρ =0 is to switch to a measure of association that guards against outliers among the marginal distributions such as Kendall's tau, Spearman's rho, a Winsorized correlation, or a so-called percentage bend correlation. But it is known that these methods fail to take into account the overall structure of the data. Many measures of association that do take into account the overall structure of the data have been proposed, but it seems that nothing is known about how they might be used to detect dependence. One such measure of association is selected, which is designed so that under bivariate normality, its estimator gives a reasonably accurate estimate of ρ. Then methods for testing the hypothesis of a zero correlation are studied.

Keywords: Skipped correlation coefficient; inferences; random variables; Pearson's correlation (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

DOI: 10.1080/0266476032000148821

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

Page updated 2020-09-04
Handle: RePEc:taf:japsta:v:31:y:2004:i:2:p:131-143