EconPapers    
Economics at your fingertips  
 

Empirical Non-Parametric Control Charts: Estimation Effects and Corrections

Willem Albers and Wilbert Kallenberg

Journal of Applied Statistics, 2004, vol. 31, issue 3, 345-360

Abstract: Owing to the extreme quantiles involved, standard control charts are very sensitive to the effects of parameter estimation and non-normality. More general parametric charts have been devised to deal with the latter complication and corrections have been derived to compensate for the estimation step, both under normal and parametric models. The resulting procedures offer a satisfactory solution over a broad range of underlying distributions. However, situations do occur where even such a large model is inadequate and nothing remains but to consider non- parametric charts. In principle, these form ideal solutions, but the problem is that huge sample sizes are required for the estimation step. Otherwise the resulting stochastic error is so large that the chart is very unstable, a disadvantage that seems to outweigh the advantage of avoiding the model error from the parametric case. Here we analyse under what conditions non-parametric charts actually become feasible alternatives for their parametric counterparts. In particular, corrected versions are suggested for which a possible change point is reached at sample sizes that are markedly less huge (but still larger than the customary range). These corrections serve to control the behaviour during in-control (markedly wrong outcomes of the estimates only occur sufficiently rarely). The price for this protection will clearly be some loss of detection power during out-of-control. A change point comes in view as soon as this loss can be made sufficiently small.

Keywords: Statistical process control; Phase II control limits; exceedance probability; empirical quantiles (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/0266476042000184055 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:31:y:2004:i:3:p:345-360

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/0266476042000184055

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:31:y:2004:i:3:p:345-360