A Sequential Markov Chain Monte Carlo Approach to Set-up Adjustment of a Process over a Set of Lots
B. M. Colosimo,
R. Pan and
E. del Castillo
Journal of Applied Statistics, 2004, vol. 31, issue 5, 499-520
Abstract:
We consider the problem of adjusting a machine that manufactures parts in batches or lots and experiences random offsets or shifts whenever a set-up operation takes place between lots. The existing procedures for adjusting set-up errors in a production process over a set of lots are based on the assumption of known process parameters. In practice, these parameters are usually unknown, especially in short-run production. Due to this lack of knowledge, adjustment procedures such as Grubbs' (1954, 1983) rules and discrete integral controllers (also called EWMA controllers) aimed at adjusting for the initial offset in each single lot, are typically used. This paper presents an approach for adjusting the initial machine offset over a set of lots when the process parameters are unknown and are iteratively estimated using Markov Chain Monte Carlo (MCMC). As each observation becomes available, a Gibbs Sampler is run to estimate the parameters of a hierarchical normal means model given the observations up to that point in time. The current lot mean estimate is then used for adjustment. If used over a series of lots, the proposed method allows one eventually to start adjusting the offset before producing the first part in each lot. The method is illustrated with application to two examples reported in the literature. It is shown how the proposed MCMC adjusting procedure can outperform existing rules based on a quadratic off-target criterion.
Keywords: Process Adjustment; Gibbs Sampling; Bayesian Hierarchical Models; Random Effects Model; Normal Means Model; Process Control (search for similar items in EconPapers)
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760410001681765 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:31:y:2004:i:5:p:499-520
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760410001681765
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().