Maximizing a Family of Optimal Statistics over a Nuisance Parameter with Applications to Genetic Data Analysis
Gang Zheng
Journal of Applied Statistics, 2004, vol. 31, issue 6, 661-671
Abstract:
In this article, a simple algorithm is used to maximize a family of optimal statistics for hypothesis testing with a nuisance parameter not defined under the null hypothesis. This arises from genetic linkage and association studies and other hypothesis testing problems. The maximum of optimal statistics over the nuisance parameter space can be used as a robust test in this situation. Here, we use the maximum and minimum statistics to examine the sensitivity of testing results with respect to the unknown nuisance parameter. Examples from genetic linkage analysis using affected sub pairs and a candidate-gene association study in case-parents trio design are studied.
Keywords: Genetic Analysis; Maximal Statistics; Nuisance Parameter; Robust Test (search for similar items in EconPapers)
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/1478881042000214640 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:31:y:2004:i:6:p:661-671
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/1478881042000214640
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().