Testing for a Unit Root in ARIMA Processes
Philip Shively
Journal of Applied Statistics, 2004, vol. 31, issue 7, 785-798
Abstract:
A unit root has important long-run implications for many time series in economics and finance. This paper develops a unit-root test of an ARIMA(p-1, 1, q) with drift null process against a trend-stationary ARMA(p, q) alternative process, where the order of the time series is assumed known through previous statistical testing or relevant theory. This test uses a point-optimal test statistic, but it estimates the null and alternative variance-covariance matrices that are used in the test statistic. Consequently, this test approximates a point-optimal test. Simulations show that its small-sample size is close to the nominal test level for a variety of unit-root processes, that it has a robust power curve against a variety of stationary alternatives, that its combined small-sample size and power properties are highly competitive with previous unit-root tests, and that it is robust to conditional heteroskedasticity. An application to post-Second World War real per capita gross domestic product is provided.
Keywords: Point-optimal; Invariant; Unit Root; ARIMA; Gross Domestic Product (search for similar items in EconPapers)
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/0266476042000214547 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:31:y:2004:i:7:p:785-798
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/0266476042000214547
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().