Robust 2k factorial design with Weibull error distributions
Bi-super-˙rdal Senoğlu
Journal of Applied Statistics, 2005, vol. 32, issue 10, 1051-1066
Abstract:
It is well known that the least squares method is optimal only if the error distributions are normally distributed. However, in practice, non-normal distributions are more prevalent. If the error terms have a non-normal distribution, then the efficiency of least squares estimates and tests is very low. In this paper, we consider the 2k factorial design when the distribution of error terms are Weibull W(p,σ). From the methodology of modified likelihood, we develop robust and efficient estimators for the parameters in 2k factorial design. F statistics based on modified maximum likelihood estimators (MMLE) for testing the main effects and interaction are defined. They are shown to have high powers and better robustness properties as compared to the normal theory solutions. A real data set is analysed.
Keywords: Least squares; modified maximum likelihood; robustness; experimental design; Weibull distribution (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500165099 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:10:p:1051-1066
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760500165099
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().