A comparison of alternative unit root tests
George Halkos and
Ilias Kevork ()
Journal of Applied Statistics, 2005, vol. 32, issue 1, 45-60
Abstract:
In this paper we evaluate the performance of three methods for testing the existence of a unit root in a time series, when the models under consideration in the null hypothesis do not display autocorrelation in the error term. In such cases, simple versions of the Dickey-Fuller test should be used as the most appropriate ones instead of the known augmented Dickey-Fuller or Phillips-Perron tests. Through Monte Carlo simulations we show that, apart from a few cases, testing the existence of a unit root we obtain actual type I error and power very close to their nominal levels. Additionally, when the random walk null hypothesis is true, by gradually increasing the sample size, we observe that p-values for the drift in the unrestricted model fluctuate at low levels with small variance and the Durbin-Watson (DW) statistic is approaching 2 in both the unrestricted and restricted models. If, however, the null hypothesis of a random walk is false, taking a larger sample, the DW statistic in the restricted model starts to deviate from 2 while in the unrestricted model it continues to approach 2. It is also shown that the probability not to reject that the errors are uncorrelated, when they are indeed not correlated, is higher when the DW test is applied at 1% nominal level of significance.
Keywords: Unit root tests; type I error; power of the test; Monte Carlo simulations (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/0266476052000330286 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:1:p:45-60
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/0266476052000330286
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().