EconPapers    
Economics at your fingertips  
 

Identifying Nonlinear Relationships in Regression using the ACE Algorithm

Duolao Wang and Michael Murphy

Journal of Applied Statistics, 2005, vol. 32, issue 3, 243-258

Abstract: This paper introduces an alternating conditional expectation (ACE) algorithm: a non-parametric approach for estimating the transformations that lead to the maximal multiple correlation of a response and a set of independent variables in regression and correlation analysis. These transformations can give the data analyst insight into the relationships between these variables so that this can be best described and non-linear relationships uncovered. Using the Bayesian information criterion (BIC), we show how to find the best closed-form approximations for the optimal ACE transformations. By means of ACE and BIC, the model fit can be considerably improved compared with the conventional linear model as demonstrated in the two simulated and two real datasets in this paper.

Keywords: Alternating Conditional Expectation (ACE) algorithm; transformation; non-parametric regression; smoothing; Bayesian Information Criterion (BIC) (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500054517 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:3:p:243-258

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760500054517

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:32:y:2005:i:3:p:243-258