Forecast of the expected non-epidemic morbidity of acute diseases using resampling methods
Andres Alonso and
Juan Romo
Journal of Applied Statistics, 2005, vol. 32, issue 3, 281-295
Abstract:
In epidemiological surveillance it is important that any unusual increase of reported cases be detected as rapidly as possible. Reliable forecasting based on a suitable time series model for an epidemiological indicator is necessary for estimating the expected non-epidemic indicator and to elaborate an alert threshold. Time series analyses of acute diseases often use Gaussian autoregressive integrated moving average models. However, these approaches can be adversely affected by departures from the true underlying distribution. The objective of this paper is to introduce a bootstrap procedure for obtaining prediction intervals in linear models in order to avoid the normality assumption. We present a Monte Carlo study comparing the finite sample properties of bootstrap prediction intervals with those of alternative methods. Finally, we illustrate the performance of the proposed method with a meningococcal disease incidence series.
Keywords: Morbidity prediction; epidemiological time series; sieve bootstrap (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500054780 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:3:p:281-295
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760500054780
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().