EconPapers    
Economics at your fingertips  
 

Monte carlo comparison of estimation methods for additive two-way tables

Natasha Yakovchuk and Thomas Willemain

Journal of Applied Statistics, 2005, vol. 32, issue 4, 351-374

Abstract: We considered the problem of estimating effects in the following linear model for data arranged in a two-way table: Response = Common effect + Row effect + Column effect + Residual. This work was occasioned by a project to analyse Federal Aviation Administration (FAA) data on daily temporal deviations from flight plans for commercial US flights, with rows and columns representing origin and destination airports, respectively. We conducted a large Monte Carlo study comparing the accuracy of three methods of estimation: classical least squares, median polish and least absolute deviations (LAD). The experiments included a wide spectrum of tables of different sizes and shapes, with different levels of non-linearity, noise variance, and percentages of empty cells and outliers. We based our comparison on the accuracy of the estimates and on computational speed. We identified factors that significantly affect accuracy and speed, and compared the methods based on their sensitivity to these factors. We concluded that there is no dominant method of estimation and identified conditions under which each method is most attractive.

Keywords: Additive model; least squares; least absolute deviations; Monte Carlo; robust estimation; two-way tables (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500079118 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:4:p:351-374

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760500079118

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:32:y:2005:i:4:p:351-374