EconPapers    
Economics at your fingertips  
 

The effects of sampling strategies on the small sample properties of the logit estimator

Jason Dietrich

Journal of Applied Statistics, 2005, vol. 32, issue 6, 543-554

Abstract: Empirical researchers face a trade-off between the lower resource costs associated with smaller samples and the increased confidence in the results gained from larger samples. Choice of sampling strategy is one tool researchers can use to reduce costs yet still attain desired confidence levels. This study uses Monte Carlo simulation to examine the impact of nine sampling strategies on the finite sample performance of the maximum likelihood logit estimator. The results show stratified random sampling with balanced strata sizes and a bias correction for choice-based sampling outperforms all other sampling strategies with respect to four small-sample performance measures.

Keywords: Sampling; Logit; Monte Carlo (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500078888 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:6:p:543-554

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760500078888

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:32:y:2005:i:6:p:543-554