Inferences of variance function - a parametric robust way
Tsung-Shan Tsou
Journal of Applied Statistics, 2005, vol. 32, issue 8, 785-796
Abstract:
Tsou (2003a) proposed a parametric procedure for making robust inference for mean regression parameters in the context of generalized linear models. This robust procedure is extended to model variance heterogeneity. The normal working model is adjusted to become asymptotically robust for inference about regression parameters of the variance function for practically all continuous response variables. The connection between the novel robust variance regression model and the estimating equations approach is also provided.
Keywords: Generalized linear models; variance function; robust profile likelihood; normal regression (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500079803 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:8:p:785-796
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760500079803
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().