EconPapers    
Economics at your fingertips  
 

Inferences of variance function - a parametric robust way

Tsung-Shan Tsou

Journal of Applied Statistics, 2005, vol. 32, issue 8, 785-796

Abstract: Tsou (2003a) proposed a parametric procedure for making robust inference for mean regression parameters in the context of generalized linear models. This robust procedure is extended to model variance heterogeneity. The normal working model is adjusted to become asymptotically robust for inference about regression parameters of the variance function for practically all continuous response variables. The connection between the novel robust variance regression model and the estimating equations approach is also provided.

Keywords: Generalized linear models; variance function; robust profile likelihood; normal regression (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500079803 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:8:p:785-796

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760500079803

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:32:y:2005:i:8:p:785-796