EconPapers    
Economics at your fingertips  
 

Bayesian analysis of panel data using an MTAR model

Yoon Young Jung, Dong Wan Shin and Man-Suk Oh

Journal of Applied Statistics, 2005, vol. 32, issue 8, 841-854

Abstract: Bayesian analysis of panel data using a class of momentum threshold autoregressive (MTAR) models is considered. Posterior estimation of parameters of the MTAR models is done by using a simple Markov Chain Monte Carlo (MCMC) algorithm. Selection of appropriate differenced variables, test for asymmetry and unit roots are recast as model selections and a simple way of computing posterior probabilities of the candidate models is proposed. The proposed method is applied to the yearly unemployment rates of 51 US states and the results show strong evidence of stationarity and asymmetry.

Keywords: MTAR; panel data; MCMC; model selection (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500080132 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:8:p:841-854

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760500080132

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:32:y:2005:i:8:p:841-854