Bayesian analysis of panel data using an MTAR model
Yoon Young Jung,
Dong Wan Shin and
Man-Suk Oh
Journal of Applied Statistics, 2005, vol. 32, issue 8, 841-854
Abstract:
Bayesian analysis of panel data using a class of momentum threshold autoregressive (MTAR) models is considered. Posterior estimation of parameters of the MTAR models is done by using a simple Markov Chain Monte Carlo (MCMC) algorithm. Selection of appropriate differenced variables, test for asymmetry and unit roots are recast as model selections and a simple way of computing posterior probabilities of the candidate models is proposed. The proposed method is applied to the yearly unemployment rates of 51 US states and the results show strong evidence of stationarity and asymmetry.
Keywords: MTAR; panel data; MCMC; model selection (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500080132 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:8:p:841-854
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760500080132
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().