Logistic and neural network models for predicting a hospital admission
Joseph Brian Adams and
Yijin Wert
Journal of Applied Statistics, 2005, vol. 32, issue 8, 861-869
Abstract:
Feedforward neural networks are often used in a similar manner as logistic regression models; that is, to estimate the probability of the occurrence of an event. In this paper, a probabilistic model is developed for the purpose of estimating the probability that a patient who has been admitted to the hospital with a medical back diagnosis will be released after only a short stay or will remain hospitalized for a longer period of time. As the purpose of the analysis is to determine if hospital characteristics influence the decision to retain a patient, the inputs to this model are a set of demographic variables that describe the various hospitals. The output is the probability of either a short or long term hospital stay. In order to compare the ability of each method to model the data, a hypothesis test is performed to test for an improvement resulting from the use of the neural network model.
Keywords: Neural networks; logistic regression; prediction; hospital admissions; medical informatics (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500080207 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:8:p:861-869
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760500080207
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().