On some robust estimation procedures for quantiles based on data
Yoeng-Kuan Chang and
Deng-Yuan Huang
Journal of Applied Statistics, 2005, vol. 32, issue 9, 909-927
Abstract:
This paper introduces some robust estimation procedures to estimate quantiles of a continuous random variable based on data, without any other assumptions of probability distribution. We construct a reasonable linear regression model to connect the relationship between a suitable symmetric data transformation and the approximate standard normal statistics. Statistical properties of this linear regression model and its applications are studied, including estimators of quantiles, quartile mean, quartile deviation, correlation coefficient of quantiles and standard errors of these estimators. We give some empirical examples to illustrate the statistical properties and apply our estimators to grouping data.
Keywords: Quantile estimation; symmetric data transformations; quartile mean; quartile deviation; correlation coefficient of quantiles grouping data (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500163532 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:9:p:909-927
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760500163532
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().