A Compromise Experimental Design Method for Parametric Polynomial Response Surface Approximations
Pradeep George and
Madara Ogot
Journal of Applied Statistics, 2006, vol. 33, issue 10, 1037-1050
Abstract:
This study presents a compromise approach to augmentation of experimental designs, necessitated by the expense of performing each experiment (computational or physical), that yields higher quality parametric polynomial response surface approximations than traditional augmentation. Based on the D-optimality criterion as a measure of experimental design quality, the method simultaneously considers several polynomial models during the experimental design, resulting in good quality designs for all models under consideration, as opposed to good quality designs only for lower-order models, as in the case of traditional augmentation. Several numerical examples and an engineering example are presented to illustrate the efficacy of the approach.
Keywords: Response surface method; surrogate models (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760600746533 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:33:y:2006:i:10:p:1037-1050
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760600746533
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().