EconPapers    
Economics at your fingertips  
 

Applications of a General Stable Law Regression Model

Ian McHale and Patrick Laycock

Journal of Applied Statistics, 2006, vol. 33, issue 10, 1075-1084

Abstract: In this paper we present a method for performing regression with stable disturbances. The method of maximum likelihood is used to estimate both distribution and regression parameters. Our approach utilises a numerical integration procedure to calculate the stable density, followed by sequential quadratic programming optimisation procedures to obtain estimates and standard errors. A theoretical justification for the use of stable law regression is given followed by two real world practical examples of the method. First, we fit the stable law multiple regression model to housing price data and examine how the results differ from normal linear regression. Second, we calculate the beta coefficients for 26 companies from the Financial Times Ordinary Shares Index.

Keywords: Stable distribution; heavy-tails; extreme values; regression (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760600746699 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:33:y:2006:i:10:p:1075-1084

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760600746699

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:33:y:2006:i:10:p:1075-1084